High-speed internet is a staple of everyday life, but many Americans don’t have access to it because no network reaches them—or they can’t afford to pay.
Sharing charts, maps, and more to show who Americans are, how policy affects the everyday, and how we can use data to make a difference. Nonpartisan forever.
B.C. O’Leary and C.M. Roberts, “The Structuring Role of Marine Life in Open Ocean Habitat: Importance to International Policy,” Frontiers in Marine Science (2017).
M. Meredith et al., “Polar Regions,” in “IPCC Special Report on the Ocean and Cryosphere in a Changing Climate” (2019): 203-320.
G.M. Watters, J.T. Hinke, and C.S. Reiss, “Long-Term Observations From Antarctica Demonstrate That Mismatched Scales of Fisheries Management and Predator-Prey Interaction Lead to Erroneous Conclusions About Precaution,” Scientific Reports 10, no. 1 (2020): 2314, https://doi.org/10.1038/s41598-020-59223-9.
E. Klein and G.M. Watters, “What’s the Catch? Profiling the Benefits and Costs Associated With Marine Protected Areas and Displaced Fishing in the Scotia Sea,” PLOS ONE 15, no. 8 (2020).
B.S. Halpern, S.E. Lester, and J.B. Kellner, “Spillover From Marine Reserves and the Replenishment of Fished Stocks,” Environmental Conservation 36 (2010): 268-276, https://doi.org/10.1017/S0376892910000032; H.B. Harrison et al., “Larval Export From Marine Reserves and the Recruitment Benefit for Fish and Fisheries,” Current Biology 22, no. 11 (2012): 1023-28, https://doi.org/10.1016/j. cub.2012.04.008; M. Di Lorenzo et al., “Assessing Spillover From Marine Protected Areas and Its Drivers: A Meta-Analytical Approach,” Fish and Fisheries 21, no. 5 (2020): 906-915, https://doi.org/10.1111/faf.12469; E. Sala et al., “Fish Banks: An Economic Model to Scale Marine Conservation,” Marine Policy 73 (2016): 154-161, https://doi.org/10.1016/j.marpol.2016.07.032; E. Sala and S. Giakoumi, “No-Take Marine Reserves Are the Most Effective Protected Areas in the Ocean,” ICES Journal of Marine Science 75, no. 3 (2017): 1166-8, https://doi.org/10.1093/icesjms/fsx059.
A.D. Rogers et al., “Antarctic Futures: An Assessment of Climate-Driven Changes in Ecosystem Structure, Function, and Service Provisioning in the Southern Ocean,” Annual Review of Marine Science 12, no. 7 (2020): 87-120, https://doi.org/10.1146/annurev-marine-010419-011028.
N. Bax et al., “Perspective: Increasing Blue Carbon Around Antarctica Is an Ecosystem Service of Considerable Societal and Economic Value Worth Protecting,” Global Change Biology (2020): 1-8, https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.15392; D.K.A. Barnes, “Polar Zoobenthos Blue Carbon Storage Increases With Sea Ice Losses, Because Across-Shelf Growth Gains From Longer Algal Blooms Outweigh Ice Scour Mortality in the Shallows,” Global Change Biology 23, no. 12 (2017): 5083-91, https://doi.org/10.1111/gcb.13772.
H.S.J. Cesar and P.J.H. van Beukering, “Economic Valuation of the Coral Reefs of Hawai’i,” Pacific Science 58, no. 2 (2004): 231-42, http://hdl.handle.net/10125/2723.